Source code for sherpa_ai.actions.context_search
from typing import Any
from loguru import logger
from sherpa_ai.actions.base import BaseRetrievalAction
from sherpa_ai.connectors.vectorstores import get_vectordb
from sherpa_ai.tools import ContextTool
SEARCH_SUMMARY_DESCRIPTION = """Role Description: {role_description}
Task: {task}
Relevant Documents:
{documents}
Review and analyze the provided documents with respect to the task. Craft a concise and short, unified summary that distills key information that is most relevant to the task, incorporating reference links within the summary.
Only use the information given. Do not add any additional information. The summary should be less than {n} setences
""" # noqa: E501
[docs]
class ContextSearch(BaseRetrievalAction):
role_description: str
task: str
llm: Any = None # The BaseLanguageModel from LangChain is not compatible with Pydantic 2 yet
description: str = SEARCH_SUMMARY_DESCRIPTION
_context: Any = None
# Override the name and args from BaseAction
name: str = "Context Search"
args: dict = {"query": "string"}
usage: str = "Search the conversation history with the user"
perform_refinement: bool = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._context = ContextTool(memory=get_vectordb())
[docs]
def search(self, query) -> str:
resources = self._context._run(query, return_resources=True)
self.add_resources(resources)
# logger.debug("Context Search Result: {}", result)
return resources
[docs]
def refine(self, result: str) -> str:
prompt = self.description.format(
task=self.task,
documents=result,
n=self.num_documents,
role_description=self.role_description,
)
return self.llm.predict(prompt)